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1. Introduction 

In  a previous paper [l],' henceforth referred t o  as 
I ,  a general expression for the thermal average, eq 
(I-47), was derived using classical path methods. In  
this paper we will show how this expression may be 
used to derive the familiar results of the impact 
theories [2, 3. 41 and the one-electron theories 13, 51. 
Possible improvements to these theories by means of 
a more general treatment of the thermal average, will 
also be discussed. 

The perturber coordinates. x (eigenvectors o f  the 
perturber position operator) are integrated o u t  of the 
expression for the thermal average when c.lassic*al 
path methods are used (see eq (1-36)). The on ly  per- 
turber variables which need to be considered in the 
expression for the thermal average, eq (1-47) are the 
coordinates x(;), VI;) of  the perturber wave packets 
(which are viewed as classical particles). The super- 
script (i) notation, which was used in I t o  distinguish 
between these variables, is n o  longer needed and. for 
convenience in notation, this superscript will not be 
used in this paper. 

The thermal average will be evaluated b y  mtlans o f  
statistical techniques. In  order t o  clearly illustrate 
these techniques and avoid unnecessary mathematical 
complications, we will consider the case of the Lyman 
lines emitted by hydrogen atoms in a plasma. 

2. Preliminary Mathematics and 

Approximations 

2.1. The line Shape in the Static Ion Approximation 

We will mahe the usual quasi-static approximation 
12. 31 for the ions  in the plasma. 'The electric fieId,g. 
produc*ed by  these ions is regarded as being static 
during the tirne of interest, and this static field is used 
t o  define the Z axis for the atom. H,, is the Hamiltonian 
for an isolatvd hydrogen atom and, for convenience, 
the perturbation is taken t o  be a dipole interaction 
wi th  the atomic dipole -eR.  

V ( t ) = e Z g +  V,.(R, x, v, t )  (1) 

V,.(R, x, v, t ) = e R  .g,;.(x, v, t ) ,  (2) 

where Z denotes the 2 componrnt of R ,  and $,,(t) is 
the fluctuating electric field produced by the elec- 
trons. The classical variables x and v are 3N-vectors 
describing the N electron perturbers (these were 
denoted by x('1 and 4;) in I). The average over ion 
fields is performed by means of the usual microfield 
average [2, 3, 61. I n  this case, the complete line profile 
is given by 

.Y(w)= P ( g ) I ( w ,  g)dg, ( 3 )  I 
where .9W) is the probability o f  finding an ion field 
of  magnitude 8. The function I ( w ,  8) is the same as 



the function I(o) discussed in 1. except that we now 
explicitly indicate a dependenc-e o n  the ion field g. 
That is. we may regard the radiator as being an atom 
which is subjected t o  a static field k4: the perturbers 
are electrons and the resulting line shape. for a given 
field 8‘. is I(o,8): the total line profile is then obtained 
h y  averaging I(o. 8) over all possible ion fields as 
shown in eq ( 3 ) .  

2.2. The Time Development Operator in the No- 
Quenching Approximation 

The time development operator T , , ( t )  (see eq (1-39)) 
is the solution of the differential equation 

d 
d t  

ih- T f l ( t )  = [ H , , + e 8 Z + ~ , . ( t ) ] T , , ( t )  

T,(O) = 1. 

In  an interaction representation defined by 

T , , ( t )  =exp  (-itHfI/h)T,‘,(t),  

we have 

a 
a t  i h - T ; , ( t )  = [ e B Z ’ ( t )  + V f ~ ( t ) l T , ‘ f ( t )  

Z ’ ( t )  =exp  ( i t H , , / h ) Z  exp (- i tH,, lh) 

V , : ( t )  = e x p  ( i t H r f / h ) V f . ( t )  exp ( - i t H f l / h ) .  

The formal solution of eq (6) may he given by 

T; , ( t )  = o exp [ - ( i / h )  I T , ‘ [ e % z ~ ( t ~  ) + ~ , : ( t r )  ~ ( l t ’  I 
where 6‘ is the time ordering operator [71 which is 
required since [ e g Z ’ ( t )  + V , : ( t ) ]  does not commute 
with [ e g Z ’ ( t ’ )  + V , : ( t ’ ) ]  unless t = t ’  ((4. eq (6) of 
ref. [SI). Equation (9) is a very cvimplic*ated expression 
and approximations must be employed t o  simplify t h e  
form of this operator. I n  this section we will vonsider 
the no-quenching approximation [ ( I ]  which is frequently 
used for hydrogen lines. 

To make an explicit statement of  the no-quenching 
approximation, we must first intrciduc-e a complete 
set of H,, eigenstates. The H,, eigenvalues. E,,. depend 
only on  the principal quantum number 1 ) .  hence w e  
denote the H,, eigenstates by I,,/> wherek is some set 
of quantum numbers which index the degenerate states 
of the  level E,,. We are interested in the radiation pro- 
duced when the atom makes a radiative transition 
from a group of initial states (degenerate states of 
some particular level E,,)  to a group of final states 
which have a lower energy. For t h e  Lyman series in 
hydrogen, there is only one final state (Le., the ground 

state neglecting spin) hhic*h we shall denote by 11 > : 
the frequency of the line of interest may then be de- 
noted by o , , ~ =  ( E , , - E l ) / h .  

4 radiationless transition which depopulates the 
initial level E,, may be said t o  quench the radiation 
near w , , , .  The probability for such an inelastic- transi- 
t i o n  from an initial state I,,/> t o  some other state 
In’k’ > (where / d  # I C ‘ )  is given by the square id 
(,LI/I T,, 1,)’k’ ). The no-quenching approxi mat ion states 
that these “off-diagonal” (Le.. I( # 1 ) ’ )  terms may be 
neglected (see eq (12) of ref. [Ul). The justification for 
this approximation will be given in section 7: in this 
section we will simply use < , t k ~ T , , ~ ~ , ’ ~ ‘  >= O t o  
simplify the form of T , , ( t ) .  

Since the “off-diagonal” matrix elements of T , , ( t )  
are assumed t o  be negligible, i t  is clear from eq (5). 
that the “off-diagonal” elements of T,’,(t)  must also 
be negligible. Noting that the H,, eigenvalues depend 
o n l y  on  I , ,  the differential equation for T,’ , ( t ) ,  eq (61, 
becomes 

with the aid of eqs ( 7 )  and (8). If we define a projection 
operator P which picks out the part of any operator 
which is diagonal in I t  

then  eq (10) may be written 

The appearance of the projection operator P in  
the generator [ e 8 P Z +  P V , . ( t ) ]  indicates that T;,(t)  
will be diagonal in I t  as required. It is interesting 
t o  note that. while I”,,([) commutes with Z (they 
are functions of atomic position coordinates), the 
operators PZ and I’V,>(t)  will r i o t  commute in general. 
The formal solution of eq (11) will therefore be a 
time-ordered exponential similar to eq (9). We will 
define an operator 9 (8) by 

9(8) = e 8 P Z / h  (12) 

and Til( t )  will be written in an interaction representa- 
tion defined by 

T ; , ( r )  = exp ( - i t  3) C’ , , ( t )  

ih - u,, ( t ) = F( t ) [iff  ( t 

p ( t )  =exp  ( i tZ?)PV, , ( t )  exp ( - - i t 3 ) .  

(13) 

(14) 

(15) 

where 
a 
at and 

With these new definitions, T f f ( t )  may be written 

406 



where [ ,,( I )  is the (time ordered) solution of eq (14): 

2.3. The Line Shape for the Lyman Series 

The line shape function defined by eqs (1-7) and 
(1-11) involves a trace over atomic states hence this 
function will describe all spectral radiation emitted 
by the  atom. Since w e  wish t o  study only one line 
(or a group of overlapping lines) at a time, we may 
pick out the relevant terms in this trace as  discussed 
in section 7.2 of 1 (see eq (I-Sl)). This selection 
may be accomplished by restricting the atomic dipole 
operator d t o  have matrix elements imly between 
t h e  initial and final states which contribute to the 
line, or lines, of interest (cf. eq (12) of ref. [9J). 

For the Lyman lines in hydrogen there is only one 
final state (neglecting spin), which we have denoted 
hy  11); t h e  initial states for any given line are the 
H,, eigenstates Id) which correspond to the given 
initial energy level E,,. All  matrix elements of R 
vanish in the ground state, ( 1  1RI 1)  = O .  hence we 
have ( l ~ U n ~ l ) = l  (this is why we have chosen the 
Lyman series as an example). 

For convenience we will now specify the states 
I&) t o  be the  parabolic states which diagonalize 
both [lo, 111 H,, and PZ.  The diagonal elements of  Z 
will be denoted by Z,,L and the diagonal elements 
of H,, (the energy eigenvalues) have already been 
denoted by E,,. There is no loss in generality in choosing 
parabolic states because the line shape is defined 
in terms of a trace over atomic states and we are 
free to choose any complete set of basis states w h e n  
evaluating a trace (Le.- a tract, is invariant under 
a unitary transformation of the basis states). The 
atomic density matrix, , ' I (  H,,).  is also diagonal in 
Id) and its matrix clements art' denoted b y  &". 

' (;sing eqs (1-7), (1-11). (1-47) and defining a fre- 
quency variable .Ao= (o - o,,~ for t he particular line 
of interest, the  line shape function /(o. S)  may be 
written in the form 

where 

F ( t k Q - 1  !lexp[--E,,(x, v ) / / , T ~ ~ ' , , ( R .  X . V .  r)dxdv. (19) 

K l i X ,  V)=+!!/IJ'+ b / I ( X )  (20)  

(21) 

E,, represents the energy of t h e  ,1/ electrons which are 
descaribed by x =  ( x l .  x?, . . .. x \ )  and v = ( v , .  v i ,  . . ., 

Q =  1 I exp I- E,,(x, v)/XTldxdv; 

v \  ). and V,,(x) is t h e  potential of interaction lietween 
e le(. t r( ms. 

The thermal average is contained rntirely in  F( t )  
and the remaining sections are devoted t o  the evalua- 
tion id' t h i s  function. When F ( t )  is known. t h t l  line 
shape is readily obtained from eqs ( 3 )  and (18). 

3. Further Simplification of the Time 
Development Operator 

3.1. General Purpose 

Although t h e  time development operator was con- 
siderably simplified by the  no-quenching approxima- 
tion, the resulting expression, eq (16), is still quite 
complicated and further simplifications are necessary 
in order t o  evaluate F ( t ) .  To facilitatcl these simpli- 
fications we note that when we use t h e  classical 
trajectories discussed in section 8.4 o f  I ,  the inter- 
action potential V,,(t) in eq (2) may be written in the 
form 

wherr 8,,(xj. v,;, t )  represents the electric field at the  
atom priJduced by t h e  j t h  perturber: Vi([) is simply a 
shorthand notation for eR -6f,4,.(x,, vj, t ) ,  the interaction 
between the atom and t h e j t h  perturber. The form of 
the potential, ZjV)(t), suggests that i t  may be possible 
to rxpress l!,,(t) in terms o f  a product of time develop- 
ment operators I ,([) for the individual electron-atom 
c*ollisioris. I n  section 3.4 it will be shown that such a 
product form is obtainrd without approximation if 
the time of  interest i_s very short. For most cases how- 
ever. t l i t .  interaction V ( t )  c*ontairis terms like 

I : ; ( t )  = t'xp ( i t Y  ) / ' C ) ( t )  exp ( - i t Y )  

whic*ti do not  i n  general commute with one another. 
and this prevents us from obtaining the product form 
for (',,(/). Nt.vertheless. if the I j ( t ) d o  n o t  overlap i n  
time (or if this overlap is r~egligible) the ordered 
exponential in  eq (17) may be expressed as  an ord(vwi 
product : 

where v j ( t )  is defined by 

Fj(t)  = exp ( i tS)PVj( t )exp  ( - i t z ) .  (25) 

(Equation (24) may be verified by comparing terms in 
the series expansions.) This result will be the basis 
of the following approximations. 
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3.3. The line Wings 

In  the wings of a line, the time of interest I / A o  (cf. 
eq (1-52)) is relatively short and i t  may-be possible 
t o  neglect the exponentials. exp  (it9’), in M t ) .  To show 
this. w e  write eq (14) in the form 

3.2. The lmpoct Approximation 

The purpose of the impact approximation is to dis- 
entangle the overlapping collisions [12, 131 in U a ( t )  
and permit the use of the product form stated in eq (24). 

To do this, the impact approximation assumes that, 
for collisions which overlap in time, the average colli- 
sion is weak enough that it may be described by a 
perturbation series in powers of V j ( t ) .  Collisions for 
which (Vdh) < 1 may be treated this way (cf. sec. 7 
of I). Strong collisions, ( V T / ~ )  > 1, for which such an 
expansion is not practical, are assumed to be well 
separated in time so that two strong collisions never 
occur simultaneously. If a weak collision overlaps 
with a strong one, the weak collision is neglected and 
strong collisions are thus disentangled. The entangle- 
ment between overlapping weak collisions first 
appears in the second order terms in the series ex- 
pansion of eq (24). In footnote 7 of ref. [13] it is stated 
the entanglement in the second order terms vanishes 
because the terms involving different electrons will 
average to zero (recall that U n ( t )  appears only under 
an average as stated in eq (19)). This result was ob- 
tained in ref. [13] by treating the electrons as statisti- 
cally independent particles (using Debye shielded 
fields to approximate their correlations). Although 
we have not made such an assumption, we note from 
eq (22) that the second order terms involve an electric 
field autocorrelation function (ge( t )&( t ’ )  ); and the 
use of statistically independent quasi-particles is 
known to be a good approximation in evaluating such 
functions. We may thus regard the impact approxi- 
mation as being valid to second order for weak 
collisions. 

Using eqs (17) and (24), we see that, in the impact 
approximation, b 7 a ( t )  may be written in the form (cf. 
p. 497 of ref. [12]) 

U j ( t )  = 0 exp - ( i / h )  vj( t ’ )dt’  , (27) [ l  1 
where BO is a time ordering operator which keeps 
the collisions in chronological order; that is, the 
Uj(t) which describes the first collision must be the 
first operator from the right in the product IIjUj(t), 
and the second collision must be the second from the 
right, etc. To state the action of 00 more explicitly, 
we note that the variables xj and vj in Vj(t) may be 
transformed into the collision variables po, 00, t o ,  etc., 
(see appendix) where t o  is a reference time for the 
collision ( to  is the time of closest approach if the 
collision is completed). The operator BO simply re- 
quires that t o  for the first collision always be less than 
to  for the second collision, etc. (this ordering is neces- 
sary because the Vj(t) for different collisions do not 
in general commute). It is important to note that, when 
the impact approximation is valid, Uj(t) refers to a 
single collision which may be either weak or strong. 

(recall that U,,(t)  is diagonal in&. If the time of interest. 
( l / A o ) ,  is small enough that 

Aw > eg,, (Z,,n- Z,,n*,) h (29) 

for all which pertain t o  the  initial level, the-n the 
exponential in eq (28) may be neglected for a<hY‘,,,, 
where&f,, denotes the  average ion field strength. For 
S>&f‘,, , the electron broadening is negligible (as we 
will discuss in sec. 7), thus, if eq (29) is satisfied, w e  
may neglect the exponentials involving 2. In  this case, 
the solution of eq (28) is 

and the time ordering is still necessary because PV,.(t) 
will not i n  general commute with PV,,(t’). 

Using the impact approximation, U,,(t) is again given 
by the product form stated in eq (26) and Uj(t)  is given 
1)Y 

Uj(t) =f exp { - ( i / h )  I)‘PVj( t ’ )dC’]* (31) 

Again the time ordering appears because PVj(t) does 
not commute with PVj(t’). 

For weak collisions the exponential is valid only to  
second order in PVj(t) (because of the impact approxi- 
mation) and it can be shown that, to this order, the 
operator G is unnecessary. To show this w e  note from 
eq (22) that PVj(t) may be written in the  form 

It is the orthogonal components of PR which do not 
commute: that is, PXg.,.(t) commutes with PXg,.(t‘)  
but not with PY&(t’) or PZgz(t’) .  To second order the 
terms which do not commute will contain factors like 
(g,,.(t)g,,(t‘)) (recall that U,,(t)  appears only under an 
average). For a spherically symmetric (about the atom) 
distribution of electrons these terms will average to 
zero. We may therefore drop the time ordering and 
write 

which is valid to second order in PVj(t) for the  line 
wings (as specified by eq (29)). 
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The a1)ove argument is not valid tor  strong c*ollisiiins 
hecause t tie series expansion of U, is not  applii~ablt~. 
We  will nonethele assume that eq 1:33) f)rovidt,s a 
good desc*ril)tion o I r e  i n f l u r n w  of’ 5trong ( ~ o I l i 5 i t ) n s :  
this approximation will be disc.irsst.d i n  swtion 7. 

3.4. The Quasi-Static Region 

In the far line wings where the time of interest, 
]/Am, is much less than the duration time r for a 
collision, 

T A W +  1, (34) 

an interaction which would normally be regarded 
as dynamic ( e . g . ,  an elertron-atom interaction) will 
take on a quasi-static aspect because the perturber 
motion during the  time of interest is negligible. 
The transition from dynamic. b.ehavior in the line 
center to quasi-static behavior in the far wings is 
not properly described by current line shape theories 
because these theories approximate U,,( t )  by the 
first few terms in its series expansion and, as will 
be shown in section 7 ,  this approximation breaks 
down in t h e  quasi-static wings. Nevertheless, i t  can 
be shown that U , , ( t )  takes a relatively simple form 
in the quasi-static wings. I n  fact, the product form 
IIjUj(t) may be obtained without approximation 
and no time ordering is necessary in the operators 
Uj(t). To show this, we note that the time ordered 
exponential in eq (30) (which is valid in the wings) 
may be expressed as an exponential involving a series 
of commutators [ 141 : 

If the commutator is negligible, P V , . ( t )  may be 
regarded as an operator which  (*ommutes with itself 
at different times: similarly w e  may regard P V ; ( t )  
and PV,(t’) as commuting operators for all i, j, t ,  
and t’. In this case, U , , ( t )  may be expressed in the 
product form IIjUj( t )  where U,( t )  is given by eq (33) .  

To show when the commutator is negligible w e  
expand V , . ( t )  atiout t = O  (in the far wings t is a small 
parameter). To lowest order the integral over PV,.( t ‘ )  
is given by t PV, . (O) /h  and t h e  integral over [ P V , . ( t ’ ) ,  
PV, . ( t” ) ]  becomes t:’ [PV,,(O), P V ; , ( Q ) ] / 6 h 2 ,  where 
V;,(O) denotes (dV, . ( t ) /d t )  at t=0. Since the magni- 
tude of [ P V , , ( O ) ,  PV; , (O)]  is less than or equal to 
PV,.(O)PV:,(O),  we need only compare the magnitude 
of ( t2PV:(0) /6h)  with unity. To estimate this quantity 
we use eqs (22) and (23)  and we obtain 

(dV,,/dt)= ( d x / d t )  ( d V , . / i j x )  = vo( d V , . / d x )  1 (voVJpo) ,  

where po and vo denote the position and veloci ty  at 
the time of closest approach (when PV:, is largest). 
Usingr= (po/vo) and t =  (l/Aw). w e  obtain 

t 2 P V i ( 0 ) / 6 h  = (VJhAu) ( 1 h A u ) .  

For quasi-static interactions w e  have V hAw (cf. p. 
23 of ref. 141) and t2PV, l (0) /6h --- l / rAw 4 1. Thus, if 
eq (34) is satisfied, the commutator in eq (35) is neg- 
ligible and U , , ( t )  may be expressed in t h e  1)roduc.t 
form as stated. 

4. Series Expansions of F ( t )  

In, this section we will obtain series expansions for 
the function F ( t )  defined by eq. (19). The various 
methods of handling these expansions give rise to 
different types of theories (e.g., the one-electron 
theory, impact theory, etc.). 

The classical Hamiltonian E,(x, v) appearing in 
F(t) was given, in eq (20), by 

Ep(x, v)  = mvj/2 + VP(xt, . . ., XY) (36) 

where xj and vj refer to the j th electron and Vp(x) 
represents the electron-electron interaction. We may 
define position and velocity distribution functions 
P ( x )  and W(v) by 

~ ( x )  = exp {-- ~ , ( x ) / k ~ } /  I dx exp {-- v , ( ~ ) J ~ T )  (37) 

W(vj) = exp {- mvj/2kT}/ dvj exp {- m 4 / 2 k T }  (38) 

(39) 

j 

I 
W(v) = rIjW(Vj), 

and these have the property that 

W(v)P(x) = @ - I  exp {-Ep(x, v)/kT} (40) 

where Q was defined by eq (21). Using the product 
form for U , ( t )  given in eq (26),  we obtain 

F ( t ) = 60 I dxP( X )  rIjdVjW( Vj) Uj ( t  ) . (41) 

Following the technique used by Baranger and Mozer 
[15], we define a function cp(R, xj, t) (which should 
not be confused with the wave functions cp used in I) by 

Using cp6) as a shorthand notation for p(R, xj, t) we 
have 

j 

(43) 

Substituting eqs (42) and (43) into (41) we obtain the 
series 

1 [ M=l  

.V 

F ( t )  =Qo 1 + 2 F M ( t )  

where 
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Since P(xI,. . ., x.~) is invariant under an interchange 
of particle coordinates we have 

F.v(t)  = [ N ! / M ! ( N - M ) ! ]  

. . . cp(1) . . . cp(M)P(xl, . . ., xS)dxl . . . dxs 
= [ N ! / M !  ( N  - M )  !] 

J . . . J cp(1) . . . cp(M)PY(Xl, . . ., XM)dXI . . f dXY, 

PM(Xl, . . ., XM)= J .  . . J P(x1, . . .1  

(4) 
where the reduced distribution function PM(xl, . . ., 
xM) is defined by 

XM, XM+I. . . ., XX)dXY+l . . . dx.v. (47) 

PM(xl, . . ., x ~ ) d x ~  . . . d x , ~  represents the proba- 
bility of finding the M particles labeled 1 through M 
in the volumes dxl, . . . d x ~  at the points xI, . . ., X,M 
(for a further discussion see ref. [16]). The com- 
binatorial factor in eq (46) represents the number of 
ways for choosing M electrons from the perturbing gas 
of N identical electrons. 

The reduced distribution functions P,tf(xl, . . ., x,~) 
may be expanded in an Ursell expansion [17], the first 
three terms of which are given by 

YPdXI) =gl(xl), 

where T i s  the volume of the system; the general term 
in the Ursell expansion is given by eq (9) of ref. [17]. 
The function gl/ is the one-body probability function; 
g,(xl)g,(x2)/~~ would be the two-body probability 
function if there were no correlation between particles. 
Since there is a correlation between the particles at 
x1 and x2, this correlation is represented by the two- 
body correlation function g2(xl, x2). Similarly P:, is 
expressed by a group of terms which contain no more 
than two-body correlations plus g:c(xl, xt, x:t), the 
three-body correlation function. The general term in 
the Ursell expansion expresses P~(xl, . . ., XM) as 
a sum of terms which contain no more than (M-1)-body 
correlations plus gM(xl, . . ., xy), the M-body correla- 
tion function. Following Baranger and Mozer [15] we 
define a function 

and, after considerable algebra, it is found that F( t ) ,  
as given by eqs (41) and (43), can be expanded in terms 
of the g.tf and then resummed to yield 

F ( t ) = Q o  exp { M =  2 1 ( n " / M ! ) h . ~ ( t ) ] .  (50) 

In the derivation of eq (50) it was necessary to let N 
and Y become infinite in such a way that the density 
n=NIY" remained constant. In this new. series for 
F ( t ) ,  each successive term represents a higher order 
correlation effect. 

We now have two entirely different expressions 
(eqs (44) and (50)) for F ( t ) .  To determine the utility of 
these expressions, we will briefly outline the physical 
significance of the terms in the series expansions in- 
volved. To understand the physical significance of 
F ( t )  itself, we note that, except for multiplicative 
constants (e.g., d matrix elements), F ( t )  is the same as 
the autocorrelation function C( t) discussed in section 
7 of I. 

The F , ( t )  term in eq (44) describes the electron- 
atom interactions (collisions) as though they are com- 
pletely independent of one another. From eqs. (42) 
and (46) we see that F j ( t )  is given by a sum of terms, 
each of which contains only one Uj operator, thus, to 
this order the effects of the interactions are simply 
additive. The terms F P ,  . . ., I;" account for the fact 
that the effect on F ( t )  of one interaction may be in- 
fluenced by other interactions. When this influence is 
taken into account, the effects of the collisions are no 
longer simply additive. This influence of one inter- 
action on another comes about in basically two ways. 
The most obvious influence is due to the correlation 
between the perturbing electrons which are de- 
scribed by the correlation functions gbf for M 2 2 .  How- 
ever, even when these correlations are ignored (by 
setting g w = O  for M 5 2), the Fz,  . . ., FM terms do 
not vanish and it is still possible for the outcome of 
one collision to be influenced by other collisions. This 
remaining influence comes about when a collision, or 
a series of collisions, produces a large change in the 
state of the radiator thereby reducing the autocorrela- 
tion function F ( t ) .  If the state of the radiator is 
thus materially altered from its original value, the 
effect of subsequent collisions will be correspondingly 
modified. For example, there is a high probability that 
a strong collision will cause an inelastic transition 
between states having different principal quantum 
numbers and it is obvious that such a transition cannot 
be neglected when calculating the effect of the next 
collision. Since it takes several weak collisions to 
build up such an influence, we expect that F j ( t )  will 
provide a good approximation to F ( t )  for times which 
are shorter than the mean free time between strong 
collisions (for those cases where a strong collisiorl 
does occur during this time, the effects of subsequent 
weak collisions are negligible in comparison). For 
longer times of interest it is necessary to consider all 
of the terms F1, . . ., F,v, and in this case eq (50) is 
more appropriate than eq (44). 
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In eq (50), the h,(t) term describes the electron- 
atom interactions as though the position of an electron 
is not influenced by the presence of the other elec- 
trons. That is, the electron-electron correlations are 
neglected in this term (although the remaining influ- 
ence of one collision on the effects of subsequent col- 
lisions is properly included). The h2 term accounts 
for pair correlations between electrons, and subse- 
quent terms describe higher order correlations. Since 
it is usually not necessary to consider more than pair 
correlations, it would seem that eq (50) is much more 
useful than eq (44). This would indeed be the case if 
we could always make calculations based on e q  (50); 
as we will show in the following sections, the calcula- 
tions based on eq (50) become quite difficult for short 
times of interest and in this case eq (44) is of more 
practical value. 

As a further comparison of eq (44) and (5O), it is 
interesting to note that, in the microfield theory 
[15], the approximation F = exp (nhl) gives rise to the 
Holtsmark distribution function (no correlation ap- 
proximation) whereas the approximation F = 1 + F I  
gives the asymptotic Holtsmark function (or nearest 
neighbor approximation). This indicates that the 
approximation F ( t )  = Qo[l+Fl(t)] is just the small 
I limit of F ( t )  = 0 0  exp { n h l ( t ) } .  To verify that 
this is the case, we note from eqs (42) and (49) that as 
t + O ,  h l ( t ) + O  and exp { n h l ( t ) } + l + n h l ( t ) ;  sub- 
stituting the functions [ 161 PI (XI) = n/N and gl ( X I )  = 1 
into eqs (45) and (49) we see that F1 ( t )  = nhl ( t )  , thus 
1 + F l ( t )  is indeed the small t limit of exp {nhl(t)}. 

5. The One-Electron Theory 

The one-electron theory is designed to provide 
a description of the wings of a line profile. The version 
of this theory presented in this section will be shown 
(in sec. 7) to provide a consistent description of 
a line profile from the half width to the quasi-static 
wings. This theory is based on the approximation 
F ( t )  = O o [ l + F l ( t ) ]  which is valid for small times 
of interest or large Aw. Since F I  ( t )  is given by a sum 
of terms each of which contains a single U j (  t )  operator 
(rather than products of the U j ) ,  the chronological 
ordering operator Qo will have no effect on F1. Using 
[16] PI (XI) = n/N in eq (45), we obtain 

F ( t ) = l + n  v(R,  XI. t ) d x l .  (51) I 
Notice that this expression involves the average 
of the time development operator for a single colli- 
sion; this is the origin of the name “one-electron” 
theory. 

The first term in F ( t )  (Le., the constant 1) will 
give rise to a delta function, 6 ( A w -  egZ,,n/h),  when 
it is substituted into eq (18). Performing the ion micro- 
field average, as required by eq (3), it is clear that 
the contribution to Y ( o )  resulting from this term 
will be proportional to 9 (hAw/eZ,,A). This represents 
the line shape which would be produced by the ions 
alone. 

The influence of the electrons (as well as some 
electron-ion coupling) is contained in the second 
term in e q  (51): 

Fi( t )  = n  p(R, XI, t )  dxi. (52) I 
I 

Using eqs (33) (which is valid only in the line wings) 

and (42), and noting that W(vl)dvl= 1,  we obtain 

As discussed in the appendix, we may transform 
to the more familiar collision variables (PO, VO, to) 
where p0 and vg denote the impact parameter and 
electron velocity while t o  is some reference time 
in the collision (the time of closest approach in a 
completed collision). In terms of these variables 
we have 

where 

The Euler angles R denote the orientation of the 
“collision axes” relative to the direction of R, the 
atomic dipole. We may therefore interpret the integral 
over R as an average over all possible orientations 
of the electron trajectory [5] relative to the direction 
of R. 

To make full use of the collision axes, we take the 
matrix elements of F l ( t )  as required by eq (18). 
These matrix elements are given by 

(d  I[ exp 1- ( i / h )  l: PVI  ( R ,  PI, VU, t‘ + t11)dt’ 
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We may now perform a rotation of the “atomic axes,’’ 
through the Euler angles R, so that R will point in the 
same direction as p,, and v,) defines the x direction. 
The rotated wave functions will be given by [18] 
Q(R)l,d),  where Y ( R )  is a rotation operator. The 
interaction potential referred to collision axes is 

v,(x, Z, t’  + t o )  

= ~ z [ ~ p ~ ~ ~ ~ z ~ ~ l ( t ’ + t o ) ] / [ p ~ + ~ ~ ( t ’ + t o ) 2 ] ~ ~ ’ g .  (57 

where X and Z denote the x and z components of R 
and we have the identity 

(60) 

The average over R in eq (59) may be readily performed 
by transforming to spherical wave functions [19] 
and using the properties of Q ( R )  as given by Ed- 
monds [18]. The function F : ‘ ( t )  may be evaluated by 
numerical methods, and the line shape is then  obtained 
by substituting the result into eq (18) and performing 
the transform. Further details of such a calculation 
together with numerical results will be reported in a 
future paper. 

6. The Impact Theory 

To obtain the results of the impart theories w e  use 
the U,(t) which were obtained by the impart approxi- 
mation, eq (27), and the approximate calculation of 
F ( t )  is based on its expansion in terms of correlation 
functions, eq (50). For most plasma broadening prob- 
lems one is interested in a temperature-density range 
where three-body correlations are negligible, hence 
it is necessary to consider only h t ( t )  (no correlations) 
and he( t )  (two-body correlations). In the impact 
theories, electron correlations are not treated with 
correlation functions (such as gz(xl, xp) which ap- 
pears in h p ( t ) ) .  Instead, in these theories the 
electron correlations are approximated by impact 
parameter cutoffs. Shielded field arguments are 
used to derive a cutoff of approximately AD, the 
Debye‘ length. in the range of the electron-atom inter- 
ac-tion 1201. and the  frequency dependent Lewis 
cutoff [21] (u2,, /Aw) is used in place of  A/, when 

(u&,\/Aw) < A/, ( th i s  will be discussed in sec. 7). A 
similar cutoff behavior has also been obtained, by 
means of correlation functions, within the  frameworh 
of a quantum mechanical theory [22]. However a 
more accurate treatment of the electron correlations 
[23] has shown that, while the cutoff at (u, , /Aw) is 
valid for Aw > w,,, the cutoffs in t h e  line center are in 
error. The cutoff at the Debye length (or at 1.1 A/, in 
some theories) should be multiplied by (2.718)-”? 20 .6  
resulting in a change on  the order of 20 percent in t he  
1)roadening function a,,,, used by Griem et al. 
[2, 9, 13, 201. For Aw = w!,, there is a possibility o f  
further corrections due t o  dynamic correlation effects. 

To derive the results obtained by the impact theory, 
we will assume that the effect of electron correlations 
may be represented by some correctly chosen impact 
parameter cutoffs. We thus need to consider only the 
function h l ( t )  as given by eq (49): 

For a fluid [ 161 such as  a plasma, gl ( xl) = 1 and hl is 
given by 

h, ( r )= I I f~x l r lv l lV (v t ) [Ut (R ,  xl. V I ,  t)-1]. (62) 

We  note in passing that if the exponential in eq (61) 
is expanded, the first two terms in the series are iden- 
tical with the  approximate expression for F ( t ) ,  eq (51), 
which is used in the one-electron theory. A further 
discussion of this correspondence is given in the 
following sections. 

Using eqs (25) and (27), hl ( t )  is given by 

Transforming to collision variables (see appendix) 
and denoting the average over po, uo, and R by a sub- 
script av, this becomes 
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Changing variables from t '  to s = t' +[I)  and using the 
identity exp [e-.JBi] = e - A e B e A ,  we obtain 

J - x  L 

We assume that a collision time 7 exists such that 
V l ( s )  = O  unless 0 s s 7. The completed collision 
assumption, which is an important part of most 
impact theories, states that if a collision occurs, 
i t  can be completed. That is, if some value of s in 
the interval [to, to+t ]  satisfies 0 s  s s 7, then the 
completed collision assumption states that the col- 
lision should be completed in that interval, i.e., 

0 =S s T s (tcl + t ) .  Using this restriction on to 
and extending the limits ( t o ,  t + to)  on the s integral to 
(- X ,  + x )  (since V I  ( s )  = 0 outside the range 0 s s s 7 
anyway), eq (65) becomes 

h , ( t ) = [  

= 1, (66) 

where S is an S-matrix for a single collision (weah or  
strong) defined by 

dt,, exp (- i t , , S )  [S- 1Ia, exp ( i t d Y )  
4 - 7 )  

( r - r )  
dt, ,  exp (itdE') [S - 1],\ exp (- it&?"), 

S = Q  exp - ( i / h )  elS3PVI(s)e-1Syds . (67) 

The completed collision assumption will provide a 
good approximation to hl ( t )  since 7 is usually very 
small (i.e., t B T ) ,  however, if t < 7, the collision cannot 
be completed and this approximation breahs down. 
Using the time of interest l / A w  from eq (1-52). we may 
state that the completed collision assumption will he 
valid when 

TAW * 1 ,  (68) 

where 7 is some "representative" collision time [3]. 
This inequality is sometimes used as the validity cri- 
terion for the impact approximation [3]: this point 
will be discussed further in section 7. 

Substituting eq (66) in eq (61) and using the operator 
identity 

{ I 

we obtain 

1 0  J 'a. 

where (cf. eq (42) of ref. [3] or eq (28) of ref. [E]) 

Qfl = n [ S  - 1Iav. (71) 

7Qn -=s 1 (72) 
If we use 

which is simply a statement that the impact approxima- 
tion is valid (as we will show in sec. 7), then eq (70) 
becomes (cf. eq (39) in ref. [3] or eq (30) of ref. [12]) 

F ( t )  =ell3 exp [-itY+t@,,]. (73 )  

Substituting this F ( t )  into eq (18), we obtain 

Comparing with eqs (9) and (32) of ref. [13], we see 
that this result is formally identical. with the results 
obtained by the impact theory for the Lyman series. 

I t  is important t o  note that, in most calculations of 
hydrogen line broadening, the exponentials exp 
(is%) in the integrand of the  S-matrix (eq 67)) are 
either ignored or approximated by a cutoff [24]. 
To show how this cutoff is obtained, we note that when 
e € f r ( Z , , ~ - Z , , ~ . ) / h  4 1 the exponentials may be re- 
placed by unity. When e&fr(Z, ,k-Z, ,k~) /h  4 1, the 
exponentials oscillate rapidly and there will be only a 
negligible contribution from this region of the integral. 
Defining a frequency 

(75) w((R, ,,d ,,L* = e@Z,,/ - Z,,C ) / h  

and noting that 7=po/uo,  we define an impact param- 
eter cutoff pmax= vo/w,,/:, ,/ ,  (in ref. [24] w,,A,,,/ is called 
Aw.,). When this cutoff is used, the exponentials exp 
(is 3) in eq (67) are replaced by unity; this cutoff 
reduces the integrand to zero when  TU,,^ ,,/ > 1, 
thus approximating the effect of the rapidly oscillat- 
ing exponentials, and when T W , , ~ , . , A - <  1 the exponen- 
tials are effectively replaced by unity. This cutoff 
is used simply as a method of simplifying the numerical 
calculations and it could be corrected without any 
modification of the theory itself. 
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7. Discussion of Approximations 

7.1. General 

I n  the preceding sections we have derived the 
familiar results of the  impact and one-rlectron theories 
using the classical path formalism developed in I. 
The advantage of these theories lies in their simple 
classical description of the perturber dynamics; their 
disadvantage with respect to  more recent quantum 
theories [6,22,25], is in the large number of approxima- 
tions which are necessary to achieve this classical 
description. Since an understanding of these approxi- 
mations plays an important role in the application and 
improvement of classical path theories, these approxi- 
mations will be discussed in some detail in this 
section. 

7.2. Preliminary Approximations 

In  our treatment of both the impact and the one- 
electron theories we have used a dipo!e approximation 
t o  the perturbation potential, a static treatment of the 
ion field, and the no-quenching approximation. 
It should also be mentioned that we have not con- 
sidered any perturbation of the final state in the radia- 
tive transition because there is n o  linear Stark effect 
in the ground state of hydrogen and any higher order 
ground state perturbations (e.g., quadratic Stark effect) 
are unimportant [26]. For lines other than those in the 
Lyman series, lower state perturbations may have to 
be considered. 

To show that the static approximation provides a 
good description of the ions, we consider the change 
I%’ i n  an electric field 8 = e / r 2  during a time 6r. Using 
68- s t (ag/ar)-  vsr(a8/ar) = ( v 8 6 t l r ) .  w e  see that 
(68/8) may be estimated by ( 6 f / T )  where T is the dura- 
tion of a collision. If 6t is replaced by the  time of inter- 
est ( l / A w ) .  we see that (68/€f) will be negligible when 

TAW 1 ,  (76) 

as mentioned earlier. If a perturber is quasi-static 
it produces a Stark splitting hAw given by h a w =  V 
(see p. 23 of ref. [41). Using V = Ze‘Ro/pi for an ion 
of charge Z e ,  this means that pi: Ze2Ro/hAw. Since 
the velocity distribution is sharply peaked about 
u,,, we estimate T by @o/u,,) and eq (76) becomes 

(77) Aw * AwC = ( hut , /e2RI , ) .  

The critical frequency Awc is sometimes referred to as 
the Weisskopf frequency. Since Awc for ions lies al- 
most at the center of most lines, the static ion approxi- 
mation is usually justified over most of the line profile 
(however see also ref. [27]). In section 3.E of ref. [ 6 ] ,  
it is shown that the effect of a static ion field may be 
described by the microfield average stated in eq (3). 

In the no-quenching approximation it was assumed 
that the TA(t) matrix elements between states having 
different principal quantum numbers could be ne- 
glected when calculating C( t) .  These “off-diagonal’’ 

matrix elements represent collision induced transitions 
which transfer the excitation of the atom from one 
energy level to another. In section 7.2 of I, it was shown 
that collision induced transitions between excited 
states correspond to switching the mode of oscillation 
in a classical oscillator. It was also shown that this 
mode switching effect could be neglected if the energy 
separation of the excited states is much larger than the 
halfwidth of the lines being studied. In hydrogen, states 
having the same mare degenerate (or nearly degenerate 
in the presence of an ion field) and collision induced 
transitions between these states are very important; 
this is the reason for regarding all states with the same 
m as  a group of initial states. Low-lying states with 
different m are well separated in energy (much more 
than the halfwidths of the lines) hence the transitions 
described by ( d l T : ( t ) l & ’ )  may usually be ne- 
glected. However, for large m the levels are closer 
together and some of the higher series members may 
overlap; in this case it may be necessary to include 
states with different m in the group of initial states. 

In section (2.2) the no-quenching assumption was 
made by setting (dl 2‘; ( t )  I v z ’ ~ )  to zero. This neglects 
the quenching terms which would be added to eq (18) 
as discussed above, however, it also neglects the in- 
fluence which (&lT;(t) /”&) has on (mA/T~~&’) .  
That is, even if a line is isolated in the sense that the 
quenching terms which would be added to eq (18) are 
negligible, it may still be necessary to consider the 
influence of the inelastic transitions l d ) + l m ’ k )  
when calculating (&IT$&’). To show when this 
influence is also negligible we consider the differential 
equation for T h ( t ) ,  eq (6). This equation may be writ- 
ten in the form 

where w,,,, = (E , , -E , , ! ) /h .  From this equation we see 
that setting (,A[T,,l,,’h‘) to zero simply neglects the in-  
fluence which the “off-diagonal” matrix elements of 
[t%Z+ V , . ( t ) ]  may have o n  ( d \ T , , I d ’ ) .  If eq (78) 
is solved in the usual iterative manner [7] by inte- 
grating over t. the term exp (itw,,,;) will oscillate rap- 
idly and contribute essentially nothing for 1 >(l /w, , , ,  ). 
This indicates that the ( ,dlZ[ , t”d”)  terms will be 
negligible compared with the (,LkIZlnk‘) terms un- 
less t < ( l / w , , , ,  ). Since the time of interest, l / A w ,  
is much larger than (l/w,,, ,-) for isolated lines, we may 
neglect the terms involving “off-diagonal’’ Z matrix 
elements. The same results apply for the terms in- 
volving “off-diagonal” elements of V,( t )  unless 
t > 7. If t > T ,  a similar argument indicates that the 
“off-diagonal” V,( t )  terms are negligible only when 
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TW,,,, > 1. I n  this rase we use T = pl)/uk1\ (the velar-itv 
distribution is sharlily ~ieaked about u ; , , )  and w e  see 
that the c.onditioti TW,,,, > 1 is violated on ly  when 
pll 5 (hr.; , \ /AE ,,,, 1 whert. AE ,,,, = ( E , , - E , , , . ) .  Substi- 
tuting this value of pll i n t o  ( V T / ~ )  = (e‘Ko/hpl,u,,.) 
( rwal l  that b .  = c J K , , / p ~  for a hydrogen plasma) w e  
find ( b ’ ~ / h ) ~ ( ~ ~ ~ , , A ~ , . , , , ,  /h‘&). Using t i : ,  2- ( 3 k T / m )  
anti  K,, --- (h2ul1/2) .  where (ill= h’lnie’. this bec.onies 
c b ’ ~ / h i  2 (n’AE,, , ,  / 2 k T ) .  If w e  use AE,,,;.=E,l(l/rt)~ 
- where E ,  = 13.6 cu. is t h e  ionization energy 
ot’ hydrogen, w e  find that the off diagonal-terms are 
i m p irt ant ( )n I y w h e n  

( v T / h )  2 (Ex /2kT) I  1 - ( / / / ) / “ ) 2 1 *  (79) 

Since E ,  P kTone t r sua l ly  has (E, /2knl l  - O,/~~‘’)’I > 1 
and, in  t h i s  case.eq (79) indicates that the (t”g”IT,’,lrMf‘) 
terms in eq (78) are important tn ly  during strong 
collisions ( in  which case Tfi averages t o  zero. as 
discussed in sec. 7 of I ,  so no error results). For 
some higher series members (very large /t2 and / / ” )  
i t  (.an happen that (EJ2A-7’) 11 - (/(///”)’\ <, 1. and 

(79) (.an be satisfied e v e n  for weak collisIot1s. I n  
this (’as?. tlie “off-diagonal” terms i n  ecl (78) niust 
he retained w h e n  calculating ( / d l T , ; l , J ’ ) .  To s w  
w h e n  th i s  oc(‘urs. w e  consider  the case where 
/ t  - - / ( & I  and / / s  1. I n  this case t h c .  quantity 
( E , / z k T ) /  I - ( / t / / , ” ) ! l  will be Icss than u n i t y  when 

// > (E,/X.T). (80) 

Thus. for l ines  involving r 6 >  (E,/A.T). wv may not he 
able t o  neglect the influenc.r ( i f  inelastic. transitions 
between states having different i)rinc*ii)al quantum 
numbers when calculating (,/kIT,;l , /A’).  This effect 
is usually negligible for hydrogen lines frotn labora- 
tory plasmas because, for these plasmas. the lines 
generally begin t o  merge (overlap) w h e n  eq (80) is 
satisfied. For some astrophysic*al applic*ations [27] 
(and for lines other than hydrogen lines) this  effect may 
he very important. 

When t h e  differential equation for the matrix ele- 
ments of T,!,( t )  in the no-quenching ay)l)roxiniatioti. 
ecj (lo), was written as an operator equation. ecj (11). 
i t  was necessary t o  introduce a projection ibperator 
P that picks out the part of an operator whic.h is 
“diagonal” in  r ) .  Although P operates on Z and V,.(t) .  
this does not imply that the “off-diagonal” elements 
of these operators are small (indeed they are about 
the same order of magnitude as the “diagonal” 
elements). The appearance of P in ecj (11) merely 
indicates that t h e  “off-diagonal“ parts of Z and 
Vfdt )  have a negligible influence on T,: in the no- 
quenching approximation. The influence of this 
projection operator is implicit in most l ine broad- 
ening theories since matrix elements of Z and Y are 
usually taken only between states having the  same 
principal quantum numbers: w e  have introduced 
P explicjtly in  order t o  avoid errors in handling T,’,(t) 
and to  clarify subsequent approximations. For ex- 
ample. the on ly  operator in C’,,(t) is the atomic posi- 
t ion operator R and one may therefore commute 

” - 

Z wi th  V, . ( t ) :  this commutation is not possible with 
I’Z and P Y , , ( t ) .  in fart. the  matrix elements of t h e  
commutator [I’Z. PI’,,( t ) ]  ar r  ahout tlie same order 
of  magnitude as the matrix ~~lements  of PZ and 
PV,,( t ) .  If  the influenc.r o f  P is o n l y  implicit. i t  is 
I)ossible t o  make serious errors by (*ommuting Z w i t h  
Y, , ( t )  when these operators appear i n  T,’ , ( t ) .  

Since PZ does not commute with PV,,( t ) ,  the formal 
solution, T h ( t ) ,  of eq (11) is a complicated time- 
ordered exponential. Although this operator has a 
rather simple form fnr the quasi-static region of the 
line wings (see sec. 3.4), it was necessary to introduce 
simplifying approximations in order to evaluate the 
rest of a line profile. The first of these was the impact 
approximation which assumes that most collisions can 
be described by a second order perturbation expansion 
of U f l ( t ) .  Strong cnllisions (V-r/h) > 1, for which this 
expansion breaks down, are treated by some other 
method such as an impact parameter cutoff. With 
this approximation, it is possible to write U , ( t )  in the 
product form 6‘JI jUj( t )  where each U j ( t )  is the time 
development operator for a single electron-atom col- 
lision. It is difficult to give a useful validity criterion for 
the impact approximation; the validity. criterion which 
is usually given [ 3 ] ,  TAW < 1 ,  is based on the com- 
pleted collision assumption which often accompanies 
the impact approximation when it is used in the impact 
theory (see secs. 6 and 7.3). Since the impact approxi- 
mation is also used in the one-electron theory, w e  have 
drawn a distinction between the impact approximation 
and the impact theory. The impact approximation, as 
we have stated it, will be valid when strong collisions 
are well separated in time. If we define a strong col- 
lision frequency, us ,  and a maximum duration for a 
strong collision, T , ~ ,  this condition may be given by 

rSus 1. (81 1 
If all collisions were strong, us would be on the order of 
the halfwidth, Awlp2, of  t h e  spectral line. For hydrogen 
plasmas we have us < Awl,z. The duration of a strong 
collision may be estimated by using ( P ’ T / ~ )  2 (r2R(i/ 
f i p ~ u , , )  2 or pl, <, (e’Ko/Plu,,) which gives T , ~  --- (po/uav) 
s (eLKo/hua,.) = ( l /Aw,) ,  where AwC is the Weisskopf 
frequency for electrons. Using vEv (3kT/m)  and 
R o =  (L2ao/2) where ao= ( h 2 / m e 2 ) ,  we have T , ~  

5 (rt,2h/kT) and T ~ V ~  < rL‘(hAw,ir/kT). Sincem2(fiAwI/2/ 
k T )  1 for most hydrogen plasmas, we expect the 
impact approximation to be valid for the electrons. 

7.3. Discussion of the Impact Theory 

In the usuak derivation of the impact theory [2, 31 
one calculates the change in ( U , ( t ( O ) )  during some 
time At (recall that U , ( t )  U , ( t \ O ) ) .  This change is 
given by 

It is assumed that: (1) At is large enough that the two 
factors on the right are statistically independent and 



may thus be averaged separately, and (2) At is small 
enough that the difference equation, eq (82), may be 
replaced by the differential equation (see eq (4.30) 
of ref. [2], eq (38) of ref. [3] or eq (2.8) of ref. [20]) 

d 
- ( U f l ( t ) )  = [exp (itH,/h)%exp (-itHn/h)](Ufl(t)) dt 

(83) 

which is then solved for ( U f l ( t ) )  (a, is given in eq (71)). 
In this derivation, assumption (1) requires At > T and 
assumption (2) requires At  4 t (as well as the average 
collision being weak; cf. pp. 508 and 529 of ref. [3]); 
together these assumptions require C % - T  which is a 
mathematical statement of the completed collision 
assumption (cf. eq (68)). Thus we see that the com- 
pleted collision assumption is an integral part of the 
usual derivation of the impact theory and the removal 
of this approximation would require a complete revision 
of the derivation. This is the reason one frequently 
sees the condition t & T or TAW 4 1 given as the validity 
criterion for the impact approximation [3]. 

In our derivation of the impact theory we first used 
the impact approximation to write U , ( t )  in the product 
form O ~ n j U j ( t )  and we obtained a consistent correla- 
tion function expansion, eq (50), for ( U ,  ( t )  ) F (  t )  . 
To obtain the usual results of the impact theory, we 
assumed that the electron-electron correlations could 
be approximated by impact parameter cutoffs, we used 
the completed collision assumption and we assumed 
that T@, < 1. It was also noted that numerical calcula- 
tions are frequently simplified by approximating the 
influence of the ion field splitting on the electron 
broadening (i.e., the factors exp ( i s a )  in eq (67)) with 
an impact parameter cutoff pmax =vold&. , j ’  which 
depends on the ion field strength. While this approxi- 
mation does not affect the region of validity of the 
theory, it would nonetheless be desirable to improve 
on this approximation to insure more accurate calcula- 
tions. It is also interesting to note that the condition 
dfl < 1 is simply a manifestation of the requirement 
that the impact approximation is satisfied (this was 
discussed in sec. 7.2). To show this, w e  use eq (71) and 
estimate the magnitude of Qfl by 

@,=n[S-1Iav 2 n(VT/h),, 
where the subscript av refers to an integral over the 
collision variables po, uo, and R (cf. eqs (64) and (A.5)). 
Since 2.rmpodpo~W(uo)du&= dv where v denotes the 
frequency of collisions described by pG YO, and fl, we 
see that n(VT/h)av=J(VT/h)dv= (V /h)  where V 
denotes the average value of V. The statement d, < 1 
now becomes ( V T / ~ )  < 1, which is satisfied if the 
average collision is weak and if strong collisions 
(Vr/h > 1)  are well separated in time. This shows that 
the condition I-@,, < 1 is always satisfied when the 
impact approximation is valid. 

One potentially useful feature of our approach is 
that it’ permits a consistent improvement of the impact 
theory within the framework of the classical path 
methods. That is, the impact parameter cutoffs, the 

completed collision assumption and the second order 
expansion of Uj(t) were needed only to simplify the 
calculation of eq (50) and it would be possible to cor- 
rect these approximations without having to rewrite 
the theory. In fact, the impact parameter cutoffs have 
already been corrected to some extent by means of 
a more consistent treatment of correlation functions 
[22, 231. 

The correction of the completed collision assump- 
tion is a matter of some importance because, if we 
estimate the collision duration time by (AD/ua,)=(l/up), 
the region of validity for this approximation, eq (66), 
is given by 

A u  < u p .  (84) 

That is, an impact theory with a completed collision 
assumption can be used only for values of Am smaller 
than the electron plasma frequency. It has been shown 
that the completed collision assumption may be cor- 
rected, in the line wings, by means of the Lewis cut- 
off [21]. This cutoff may be obtained from eqs (61) and 
(62) by expanding F( t )  to second order in V(t)  and 
performing the Fourier transform as stated in eq (18) 
(cf. eqs (6) and (17) of ref. [ Z l ] ) .  

Since the derivation of the Lewis cutoff is based on 
an expansion of F(t)  which is valid only in the line 
wings, the use of this cutoff in the impact theory raises 
some doubts as  to the validity of such a “modified” 
impact theory in the line center. These doubts may be 
dispelled to some extent by means of a comparison 
with the results of the quantum mechanical relaxation 
theory which does not make a completed collision as- 
sumption. In reference [22] it is shown that the 
results of the relaxation theory essentially reproduce 
the behavior of a Lewis cutoff, and these results are 
not restricted to the line wings. In spite of this useful 
comparison, it would nonetheless be desirable to con- 
firm this behavior within the framework of a classical 
path theory. In this regard, it is important to note that 
the completed collision assumption is not an inherent 
part of our derivation of the impact theory. This ap- 
proximation was introduced simply to compare with 
the results of the usual derivation. It would thus be 
possible, in principle, to calculate F ( t )  from eqs (61) 
and (62) without making a completed collision assump- 
tion. This has in fact been done, to second order, 
[28], and it is found that the results are identical with 
the results of the relaxation theory. It thus appears 
that a “modified” impact theory which does not make 
a completed collision assumption (such as  ref. [28]), 
or a theory which corrects this assumption by means of 
a Lewis cutoff, will have a wider range of applicability 
than that stated in eq (84.  

(or if it can be corrected by some approximation such 
as  the Lewis cutoff), the only serious limitation on 
the applicability of such a “modified” impact theory 
comes from the second order expansion of U j ( t ) .  This 
expansion should be valid whenever the quantity 
(ilh) J V(t‘)dt’ is small compared with unity. For com- 
pleted collisions this quantity was estimated (cf. 
eq (I-)) by ( V T / ~ )  and the expansion was justified 

If the completed co l l  ision assumption is not made 
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except for strong collisions. For collisions which 
cannot be completed during the time of interest 
(Le., collisions for which TAW > l ) ,  we have ( l / h )  
IV(t ' )dt  2 ( V / h A w )  and it remains to be seen whether 
this is small or not. This situation may arise in the far 
wings of a line where the electron-atom collisions take 
o n  a quasi-static aspect (cf. sec. 3.4). In this region, 
the intensity at a point Aw is primarily determined by 
those interactions which produce a Stark splitting 
hAw; that is, by those interactions for which V = hAw 
(see p. 23 of ref. [4]). For these quasi-static interac- 
tions we have ( l /h )  J V(t ' )d t '  = (V /hAw)  = 1 and 
the series expansion of Uj(t) breaks down [29]. 
To determine where this breakdown occurs, we use 
7 = (po/v, ,)  (eo = v,, for neutral radiators) and TAW 2 1 
to obtain po 2 (uav/Aw); substituting this result in 
hAw = V = e'Ro/pb, we obtain Aw = (hviJe'Ro) = Awr 
where Awr is the Weisskopf frequency for electrons. 
Using v,,= (3kT/m)'/'  and (h'/me'), we have 
Aur= (3kT/h)  (ao/Ro); thus we see that the second 
order expansion of U , ( t )  limits the application of the 
impact theory to the region 

In principle this range of applicability could be ex- 
tended by using the full exponential for Uj(t) rather 
than its series expansion. In this regard it should be 
noted that the derivation of the Lewis cutoff is based 
on the second order expansion and, if this expansion 
is to be improved, it may be necessary to improve the 
Lewis cutoff as well. 

7.4. Discussion of the One-Electron Theory 

In the previous section it was shown that the im- 
pact theory is limited to the center region of a line 
profile because of the second order expansion of 
U j ( t ) .  The one-electron theory is designed to be 
valid in the line wings and it is expected that its region 
of validity will overlap with that of the impact theory 
so that the complete line profile may be described 
without ambiguity. To insure that the one-electron 
theory will be valid in the line wings, we used the 
exponential form of Uj(t) which is valid in the wings. 
In the derivation of this exponential form it was 
assumed that both the ion field splitting and the time 
ordering operator could be neglected. 

In section 3 . 3  i t  was shown that the time ordering 
operator is not necessary if the second order expansion 
of U j ( t )  is justified, and in section 3.4 i t  was shown 
that time ordering is not necessary f'or quasi-static. 
interactions. It thus appears that the only errors 
resulting from t h e  neglect o f  time ordering will come 
from the strong collisions. Since t h e  average effect 
of strong collisions is t o  reduce Uj(t) t o  zero (see 
sec. 7 of I) ,  the errors made in these collisions should 
have a negligible effect on (Uj(t)). 

To find o u t  when w e  may neglect the exponential 
rxp  [ i t e € f ( Z , , n - Z , , ~ . ) / h J  which appears in the operator 
U,,(t) used b y  the one-electron theory, eq (28), w e  
consider a cutoff that is similar t o  thecutoff v / w , , ~  ,,A, 
which approximates this exponential in the impact 

theory (see eq (75)). Using t =  l / A w  and w , , ~  ,,n,(€f) 
= e8(Z,,n-Z,,ns)ih, w e  note that this exponential is 
essentially unity when (w,,d ,,n,/Aw) < 1: w h e n  
(w , , / ,  ,,/ /Aw) S- 1 t h e  exponential oscillates rapidly 
and there is only a negligible contribution from 
U,, ( t ) .  Since U,,( I )  appears under a microfield average, 
w e  will consider a cutoff &$'<.=hAo/e (Z,,n-Z,,/ ) in 
the ,  range of this micwfield average. We replace the 
exponential by unity and average over ion field 
strengths kp<g,-; this cutoff replaces t h e  integrand 
by zero when (w, ,~,  , , / ! / A w ) >  1, thus approximating 
the effect of t h e  rapidly oscillating exponentials. 
and when (w ,,d , , / , /Aw) < 1, the exponentials are 
effectively replaced by unity. This cutoff has n o  
effect on the static ion broadening because. in the 
one-electron theory, the l ine shape is a sum of t w o  
terms (cf. eq (51)) and t h e  term which descrilws the ion 
broadening (the Y(hAw/Z. ,n)  term) is not affkcted h y  
t h e  microfield average of the electron broadening 
term (the F l ( t )  term) where the cutoff is applied. 
I f  i t  should happen thatg,.s>g,,., we may as well 
ignore the cutoff and average over 0 ~ g s  30 because 
9(g) will be negligibly small for E4> $,.. That is, the 
exponential may he replaced by unity for all $ w h e n -  
ever $,.=hAw/e(Z,,n-Z,,n,)  >gaV or, as i t  was stated 
in eq (B) ,  whenever 

Aw > eE4.,,.(Z,,A-Z,,k)/fi. (86) 

noted that, as a practical estimate of 
t h t .  region of  validity for neglecting the effect of the 
ion field o n  electron broadening, eq (86). is usually 
too restric,tive. For higher l ines  (large wliicti have 
a large nuni1)er o f  Stark components (allowed 
Id) -+ I 1) transitions) a more realistic estimate 
is obtained by considering the average Stark splitting 

Aw > eKlvZav/h (87) 

I t  should 

w h i c h  is usually ori tlie order of the halfwidtli 1301. 
'Tlw use of  Z k l ,  rat1~t.r than  the maximum value of  
(Z,,d-Z,,n ) i s  more appropriate for the higher lines 
lit*(.aust-L. I'or t h r  larger values of Z , J .  the quantity 
egkl\Z,,//ii c.orrt.sponds t o  a very large f'requrncy and 
t t i t s  rlwtron liroadeninp is negligible tor some v a l u ~ s  
( 1 1 .  Aw Ivss than ~ g ~ , , Z , , / / h  ( for  large Z,,n. .4 (hAw/eZ,,n) 
i s  inuc~l i  larger than the electron broadeninp term f o r  
a wide rangt' o f  Aw whic*h are less than eg;,\Z,,n/h). 

Since w e  wish t o  use a classical potential in C! , j ( t )  
t i ,  describe the quasi-static interactions, it is necessary 
t o  justify the use of the classical wavepackets which 
give rise t o  a classical potential ( in  sec. 8.3 of I ,  we 
justified the use of classical wavepackets only for 
dynamic perturbers). In section 8.3 of I ,  it was shown 
that w e  may represent the perturbers by nonover- 
lapping classical wavepackets of width Ax and momen- 
tum uncertainly A/)  e p if 

Since w e  have &,,e J I - ~ / : ~  for most problems of inter- 
est, this criterion is easily met. We thus need only 
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show that tht .  radiator and perturlier wave func*tions 
(Io not overlap during the tinif. of  interest. Lsing the 
notation ( i f  s t * c < t i o n  8.3 i n  I .  tliis crittarion ma! l)e w-rit t tan 

(89) 

M her( .  K, ,  = ,12(/ll=,r2h2/me2 denotes the effective 
c.xtt.nt of t h r  radiator wave. function. [,'sing A/) e 

the (tA/) /m) term in eq (89) may be dropped. [;sing 
I '  = hAw (for quasi-static interactions) and I.'= c,'K(i/ptl 
we obtain p;, (P2KO/fiAw) = K;, (e2/2( / i , )  ( l / f iAw) 
= KZ (2E,/,lghAw) where E ,  = r'/2aIl is the ionizatiori 
vnergy. Since h A w 4  EJr!?. we see that KO@ po 
1ienc.e the K l l  term in eq (89) may also be dropped 
and we need o n l y  show that 

[ A.v + ( tA/j/lp/ ) + Kii] < pii 

atid / < T =  ( p ~ i / t ' o ) .  wv set% tliat (tA/)//t /)  4 pii ht.n('e 

A.1 < po. (90) 

Again using the value pfi --- (e2KI/ftAw) givrn above. 
as well as A:,= (h' /3nikT) and ( I o =  h2/lrpteg. we find 
that pt=.A2,, (X.T/hAw) ( Ko/trll). Since Kll > and 
hAw 6 k T ,  we see that plI >>ha, hence i t  is possible t o  
find a Ax which will satisfy both eq (90) and eq (88). 
The use of a classical potential function is thus justi- 
fied for quasi-static electron-atom interactions. 

The results of the one-electron theory are hastd on 
the approximation F ( t )  = 1 + F l ( t )  which treats the 
electron-atom interactions as  thciugli they are in&- 
pendent of one another. I n  section 4 i t  was argued 
that this is probahly a good approxirnatiiin. if t h t .  
times of interest are shorter than the. mean f r w  time 
between strong collisions. To obtain a validity criterion 
for this approximaticin one sometimrs identifiw the 
collision frequency with the halfwidth Awl:, for thr 
line under c*onsideration: t h v  recluirt.mc.rit that t h t l  
time of interest. l /Aw. he less than t h t .  ni('ati f'rw t i n i t .  
hetween collisions is then writteri [31 

AW > Awl12 (91 I 

Although this argument is somewhat loose. i t  will I)e 
shown that eq (91) ac.tually dotAs Iircividi. a u w f u l  
statement of the regiiiti (11' validity f o r  t I i ( .  ot i t~-c~Ic~c~t rc i t i  
theory. 

T,) derive a validity criterion for the i i n r ~ - c . l e c . t r o n  
theroy, we note that the approximate F ( t )  uscd  in 
this theory. eq (Sl) ,  is formally the same as an expan- 
sion to lowest order in hl ( t )  of the approximate 
F ( t )  used in the impact theory, eq (61). That is. the 
single particle approximation is simply a small h l ( t )  
approximation which is valid w h e n  nlhl(t)l < 1 .  
From the definition of h l ( t )  (see eq (62)) i t  is clear 
that ti I h l ( t )  1 < 1 for small I .  For large t the impact 
theory is valid and w e  use eqs (66) and (71) t o  obtain 
n I h l ( t )  I t@,l. Replacing t by the time of interest. 
l /Aw, the validity criterion n l h l  ( I )  I < 1 becomes 

Aw > (92)  
Thus -the one-electron theory should be valid when 
both eqs (86) and (92) are satisfied (or, for higher 
lines, when eqs (87) and (92) are satisfied). 

I f  the avvragt. ion  field splitting is small. ( e ~ ~ ; , , . % , ~ / f i )  
< @,,. or if the linear Stark effec*t due to the ion field 
does influenc~r t h i .  lint. ahapt. ( e . g . .  isolated lines). 
the halfwidth is determined [30] by the matrix ele- 
ments of a,, (see sec-. 4.7 of ref. [2] ) .  I n  this case, the 
region of  validity is given I )y eq (91) as Aw > Awl 2.  

For lines where the average ion tield splitting is 
large. (r8, , .ZJh ) > a,, ( e .g . .  higher Iivdrogen lines: 
the halfwidth is determined primarily by i o n  broaden- 
ing I301 and Awl,2 2- ( &kl,.Zk,v/h ) .  In this case eq (87) 
is more restrictive than eq (92) and the region of 
validity is again given by Aw > Awl,2. 

The low lying hydrogen lines are determined by a 
small number of Stark components and, for many of 
these lines. a discussion of the halfwidth is of  little 
value; lines such as Ly-p and H-P do not  even have a 
well-defined halfwidth. Lines such as L y - a  and H a  
have a very intense Stark component which is not  
shifted by linear Stark effect and the halfwidths of 
these lines are determined primarily by the electron 
broadening of this unshifted component. In  such a 
case, eq (92) gives Aw > Aw112. However, the remain- 
ing Stark components are very important in  determin- 
ing the line profile outside of the relatively narrow cen- 
tral component and, for these shifted components, eq 
(86) becomes more restrictive than the condition 
Aw > Awl,r obtained from eq (92). I t  should be noted 
that eq (86) is probably not very much more restrictive 
than the condition Aw > Awl,?; for example, i n  the 
~ a s e s  where 1.y-a has been studied experimentally 
[31. 321. eq (86) gives approximately Aw > wJ10 and 
wJIO differs very little from  awl,^ 

From the above discussion we conclude that the 
~tit.-elwtron theory will be valid in the regon 
Aw > Awl;? for isolated lines and for overlapping lines 
whic.li have a large number of Stark components. 
For overlapping lines wi th  on ly  a few Stark com- 
ponents. the c*ondi t ion  Aw > Awl,, may no longer be 
alil)licaable and (me should (vbnsider eqs (86) and (92) 
for c1ac.h Stark c.onipcinent. 

8. Comparison of the Impact and 
One-Electron Theories 

The calculations in  both the impact and one-electron 
theories are based on binary collisions. The one- 
electron theory treats the electron-atom interactions 
as though their effects are additive and for this reason 
the one-electron theory is limited to the line wings 
(short times of interest) whereas the impact theory 
is not. In  principle, the impact theory (with a Lewis 
cutoff) should be valid over most of the line profile; 
however, in practice it is usually necessary to expand 
the time development operator, U j ( t ) ,  in order to 
make practical calculations, and it is this expansion 
which limits the impact theory to the center region of 
a line profile. 

It was shown that the series expansion of Uj( t )  
could not adequately describe either the strong col- 
lisions, ( V T / ~ )  2 1, or the quasi-static interactions, 
( i / h ) J V ( t ) d t  = 1, which are important in the line 
wings. In our version of the one-electron theory this 
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. difficulty is avoided through the use of an exponential 
expression for U,(t) (previous versions of the one- 
elec.tron theory have used either a completed collision 
assumption [5] or a series expansion [3] of Ul(t) 
hence they cannot be valid in the quasi-static wings). 
While this exponential form is not rigorously correct 
for strong collisions it does have the following useful 
properties: 

(1) I t  is c’orrect for weak collisions, ( V T / ~ )  < 1, 
since it reproduces the series expansion for such inter- 
ac tic )lis. 

(2) It is correct for quasi-static interactions whereas 
the series expansion is not. 

(3) For strong collisions, ( V ~ l h )  2 1, the exponen- 
tial would give a much more realistic approximation 
to the exact U J ( t )  than the series expansion because 
the exponential retains unitarity (Le., no transition 
probability can exceed unity). Thus, if one chose to 
use classical path methods for calculating U J ( t ) ,  the 
strong collision cutoff discussed in section 7 of I ,  
would be essentially reproduced (i.e., the exponential 
would oscillate rapidly and contribute essentially 
nothing for strong collisions). The errors resulting 
from this treatment of strong collisions should be 
negligible because the averaged U J ( t )  for strong col- 
lisions is essentially zero. 

It i s  interesting to note that if we use a second order 
expansion of C \ ( t )  in the one-electron theory, w e  tb- 
tain the asymptotic wing expansion which is used in 
deriving the Lewis cutoff [21]. That is, the Lewis 
cutoff, which is applied t o  the impact theory in an ad 
hoc manner, is an integral part of the one-electron 
theory. 

Since the Weisskopf frequrncy, Ao, , for electron< 
is generally much greater than the haifwidth, there 
should be a broad range of overlap between the re- 
gions of validity OSAo<ho, and Awl/2<Aw for the 
impact and one-electron theories. Nevertheless, in 
our derivation of the impact and one-electron theories 
we have tried to stress the formal connection between 
the two in order to provide a better understanding of 
their similarities as well as their differences. We feel 
that this is particularly important since it would be 
desirable to formulate a classical path theory which is 
valid in the line center as the impact theory is, and 
which makes a smooth transition t o  the line wings as 
the one-electron theory does. I t  is hoped that the 
present approach will make it possible to  remove some 
of the approximations which currently limit these 
classical path theories. 

9. Appendix. Collision Variables 

We wish to use the natural collision coordinates in 
evaluating the integral 

where 

V I ( R , x l + v t t ‘ )  = e ~ R . ( x I + v l t ) / I x l + v t t I . j .  (A.2) 

For fixed values of xI and v I .  we note that the head of 
the vector (xt + v l t ’ )  traces out a straight line if I ’  is 
varied from - cc to + E. We shall call this line / , ( X I ,  V I  ) . 
The integral over t ’ ,  in eq ( A . l ) ,  will cover a segment of 
this line. For fixed X I  and V I ,  we can define a vector 
po from the origin of coordinates to the closest point 
on I,; this vector will be perpendicular to  vt.  W e  can 
also define a scalar t o  by 

XI = pa + Vlto. (A.3) 

For a fixed vt ,  we see that, as xt varies over all space, 
Ivt [ t o  varies on the range (-os, + m) and po= lpnl 
varies on the range (0, m). We may thus change vari- 
ables from x1 to the cylindrical coordinates (pn, t o ,  a )  
where vI  defines the polar direction and a is an angle 
which ranges from 0 to 2n. The Jacobian for this trans- 
formation is such that dxl -+ / u1 / podpodto&. In these 
coordinates the potential function becomes 

Vt (R ,  po, vt, t ‘  + to )  = e2R 
. [ p o t  VI ( t ’  + t o ) ] /  [ p i +  ~ ( t ’  + t o ) 2 ] ” 2 .  (A.4) 

We may express dvl in spherical coordinates, $,duo 
sin ,8 c/p cly, where the angles /3 and y denote the ori- 
entation of vt relative to the direction of R. Since po 
is defined to be orthogonal to v l ,  the integrals over the 
Euler angles a ,  /3, and y average over all possible 
orientations of the (PO, VI) frame of reference (collision 
axes) relative to the direction of R. Equation (A . l )  may 
now be written 

where tlR = sin p tlaclp (17. 
It is clear that the line L represents the trajectory 

of a Qerturbing electron, uo is the speed of the electron, 
pl) is the impact parameter, and to is some starting time 
for the collision (or, if the t ’  limits of integration are 
(- b, + m) in a completed collision, t o  may be regarded 
as the time of closest approach). The orthogonal 
“collision axes” to which this collision is referenced 
are po and v l .  The Euler angles R denote the orienta- 
tion of the collision plane relative to the direction of 
R; the integral over R may therefore he interpreted as 
an average over all possible orientations of the electron 
trajectory. 
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